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• The Sample Return Orbiter (SRO) arrives in martian
orbit by any of several means: 
– Solar Electric Propulsion (SEP) rendezvous w/spiral
– Chemical Propulsion (CP) insertion w/aerobraking
– A hybrid SEP/CP scheme w/staging

• The Sample Return Lander (SRL) would have already 
landed and would be completing its mission: 
– Land, deploy fetch rover to collect sample tubes
– Deposit sample tubes in an Orbiting Sample (OS) container 

mounted in a Mars Ascent Vehicle (MAV)
– Launch MAV w/OS to Low Mars Orbit (LMO)

• The SRO must detect and rendezvous with the OS in a 
way that maximizes failure tolerance.
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• The notional SRO would make use of optical cameras to acquire 
and determine the orbital elements of the OS. 

• Camera suite: 
– Long-range detection, initial navigation:

• Narrow Angle Camera (NAC) x1

– Redundant detection, stereo navigation: 
• Medium Angle Camera (MAC) x1

– Stereo terminal rendezvous, OS inspection:
• Wide Angle Camera (WAC) x3

• Initial acquisition imagery would be downlinked and processed on 
Earth to generate orbit matching maneuvers.

• Terminal rendezvous would be performed autonomously with key 
go/no-go points for ground authorization.
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• Introduction/problem statement
• Development of a new SNR equation
• Requirements for an example camera suite
• OS orbit insertion dispersions
• Relative orbital dynamics, simulation
• Radiometric results in the presence of dynamics
• SNR results vs. simulation time
• Relative navigation
• Extension to terminal rendezvous
• Conclusion
• References
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• Detection begins with signal-to-noise-ratio (SNR) equation.
• Previous version (Woolley et al. 2011) gives relevant SNR in 

terms of camera parameters, OS parameters, and geometry: 
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• The phase function represents the reflected light fraction to the 
observer:

𝑔 𝜙 = 10'(.(*+

• Some things of note: 
– Linear, monotonic SNR increase with exposure time (𝑡!)
– Condensed linear inverse noise factor (N)
– Phase function (𝑔 𝜙 ) converges to 100% at 𝜙 =  deg
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• A new phase function (𝑔,-../0$ 𝜙 ) of a diffuse, spherical object 
was substituted:
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• A new noise formulation includes stray light, read noise w/time 
and multi-pixel smear due to motion:
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• An example set of camera electronics must be chosen to inform 
camera noise characteristics/efficiency.

• The example camera explored here was the Mars 2020 Enhanced 
Engineering Cameras (EECAMs) (Maki et al. 2016). 
– Common electronics for each camera w/ different optics
– Existing technology, in production
– Small, light, energy efficient electronics

• Requirements for each camera’s optics, based on operational role 
and range regime:
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Sensor Max Range Min 
Range FOV Aperture Accuracy of OS Centroid

NAC >3,400 km < 100 m > 5° < 10 cm Angular: < 35 µrad

MAC >1,000 km < 10 m > 10° < 5 cm Angular: < 500 µrad

WAC >1 km < 0.25 m > 60° < 5 cm Angular: < 1 mrad
Range: ~15 cm @ 10 m
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• Example camera optics chosen according to optimal and flexible 
performance in a tradespace analysis. 

• Necessary exposure time to effect detection was examined as a 
function of aperture diameter and field-of-view (FOV), considering 
the previous requirements.
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Detection results at 3,400 km range 
(maximum chord)

Redundant detection at 1,000 km range
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• The SRO orbit is treated as nominal, according to the definition: 

• Numerous (in this example case, 50) OS Monte Carlo 
instantiations are created, and distributed according to the 
notional MAV covariance dispersions (Benito et al. 2017):
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Semi-Major
Axis Eccentricity Apoapsis Periapsis inc RAAN Arg. of Latitude Alongtrack

±32 km < 0.019 -2 to +106 km -97 to +2.4 km ±1.1° ±0.17 deg ±0.71 deg ±46 km

Element Symbol Value Unit
Semi-Major Axis 

(SMA) a 3,865.8 [km]

Eccentricity e 0 [N/A]

Inclination i 25 [deg]

Solar Beta Angle β ~90 [deg]

~470 km altitude



Pre-decisional information – for planning and discussion purposes only.

Jet Propulsion Laboratory
California Institute of TechnologyOrbital Dynamics

• This OS “cloud” disperses with time, adding a sense of urgency to 
the SRO’s optical search and limiting minimum FOV to facilitate 
modest mosaicking.
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• Mars Orbiter Initial acquisition for Rendezvous Application 
(MOIRA) combines all of the previous effects w/orbital dynamics

• The OS “cloud” exhibits several expected behaviors: 
– Short-period relative (to SRO) motion
– Mid-period divergence due to variation in SMA
– Long-period divergence due to aspherical potential
– (more on these behaviors in results)
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Dispersion 
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approaches and 
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• A “detectability” metric  was formulated to quantify the ease of 
detecting multiple lower-SNR adjacent pixels due to smear.

𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑛"# = 1 𝑆𝑁𝑅 ⁄ 5

1 < 𝑛"# < 5 5𝑆𝑁𝑅 ⁄ (−0.5𝑛"# + 5.5
𝑛"# ≥ 5 𝑆𝑁𝑅 ⁄ 3
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The “sweet spot”, ~1 sec

Function of static SNR, motion, 
and camera noise vs. time
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• The example camera suite NAC proves capable of effecting initial 
detection at OS insertion for more than half of the orbit (phase 
angle >= 90 deg “half-moon”)
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• The SNR of the individual OS candidates diverge significantly 
after ~8 hr, with the first candidate overtaking the SRO (below) 
and having its SNR drowned by martian backlight.

• Note eclipse behavior, divergence w/time, martian backlighting 
during overtake, and eventual occultation by the martian limb.
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• Navigational uncertainties are sufficiently small at the end of the 
initial acquisition phase to begin formulating orbit matching 
maneuvers. 

• The example camera suite provides capability for stereo and/or 
redundant tracking for the remaining phases of rendezvous.
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• Camera sufficiency extends to later phases of the rendezvous 
operation, effecting a safe and accurate rendezvous and capture 
with the OS. 

• Subject to further investigation and/or publication. 
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• Results show that optical detection of an object in Mars orbit by a 
robotic orbiter is feasible, with the following features: 
– Passive optical system measures reflected solar visible light
– No need for RF crosslink, radar or LIDAR
– The OS can be passive, inert, and non-cooperative
– The camera requirements are achievable with current technology
– The example cameras are compatible with all phases of rendezvous, with 

custom optics for each of the three camera types
– The navigation uncertainties achieved are suitable to begin formulating 

orbit matching maneuvers
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